PKM2 phosphorylates MLC2 and regulates cytokinesis of tumor cells

نویسندگان

  • Yuhui Jiang
  • Yugang Wang
  • Ting Wang
  • David H. Hawke
  • Yanhua Zheng
  • Xinjian Li
  • Qin Zhou
  • Sadhan Majumder
  • Erfei Bi
  • David X. Liu
  • Suyun Huang
  • Zhimin Lu
چکیده

Pyruvate kinase M2 (PKM2) is expressed at high levels during embryonic development and tumour progression and is important for cell growth. However, it is not known whether it directly controls cell division. Here, we found that Aurora B phosphorylates PKM2, but not PKM1, at T45; this phosphorylation is required for PKM2's localization and interaction with myosin light chain 2 (MLC2) in the contractile ring region of mitotic cells during cytokinesis. PKM2 phosphorylates MLC2 at Y118, which primes the binding of ROCK2 to MLC2 and subsequent ROCK2-dependent MLC2 S15 phosphorylation. PKM2-regulated MLC2 phosphorylation, which is greatly enhanced by EGF stimulation or EGFRvIII, K-Ras G12V and B-Raf V600E mutant expression, plays a pivotal role in cytokinesis, cell proliferation and brain tumour development. These findings underscore the instrumental function of PKM2 in oncogenic EGFR-, K-Ras- and B-Raf-regulated cytokinesis and tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis

Tumor-specific pyruvate kinase M2 (PKM2) is essential for the Warburg effect. In addition to its well-established role in aerobic glycolysis, PKM2 directly regulates gene transcription. However, the mechanism underlying this nonmetabolic function of PKM2 remains elusive. We show here that PKM2 directly binds to histone H3 and phosphorylates histone H3 at T11 upon EGF receptor activation. This p...

متن کامل

Pyruvate kinase M2 phosphorylates H2AX and promotes genomic instability in human tumor cells

Pyruvate kinase (PK) catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP, a rate-limiting reaction in glycolysis. M2 isoform of PK (PKM2) is the predominant form of PK expressed in tumors. In addition to its well established cytosolic functions as a glycolytic enzyme, PKM2 displays nuclear localization and important nonmetabolic functions in tumorigenesis. Herein, we rep...

متن کامل

Extracellular Pyruvate Kinase M2 regulates tumor angiogenesis

Pyruvate kinase M2 (PKM2) has been studied for decades on its role in cancer metabolism. Re-cently, PKM2 is highlighted again for its new function: promoting gene transcription by acting as a pro-tein kinase. Moreover, the PKM2 levels in patient circulation have been used as a diagnostic marker formany types of cancers. However, it remains unclear whether PKM2 in blood circulati...

متن کامل

AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth

Pyruvate kinase muscle type 2 (PKM2) exhibits post-translational modifications in response to various signals from the tumor microenvironment. Insulin-like growth factor 1 (IGF-1) is a crucial signal in the tumor microenvironment that promotes cell growth and survival in many human cancers. Herein, we report that AKT directly interacts with PKM2 and phosphorylates it at Ser-202, which is essent...

متن کامل

Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth.

The Warburg effect describes a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose even in the presence of oxygen. To better understand how tyrosine kinase signaling, which is commonly increased in tumors, regulates the Warburg effect, we performed phosphoproteomic studies. We found that oncogenic forms of fibr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014